
Lecture 4: Planet formation

1 Formation of planetary cores / terrestrial planets

Following on from the Lecture 3, our (somewhat dubious) starting point is a protoplanetary disc
populated by a large swarm of planetesimals. Planetesimals are (by definition) sufficiently massive
that collisions between pairs of them have sufficient gravity that most of the mass of the colliding
bodies ends up agglomerating into a single body1. Terrestrial (proto-)planets and giant planet cores
are the end products of this process of collisional growth, and the dominant factors in controlling
the growth rate are the collision cross-section and the size of the available mass reservoir.

For small bodies, as we saw in Lecture 3, the relevant cross-section is simply the (projected) area
of the particle. For planetesimals, however, we must consider the additional effects of gravitational
focusing. We consider two bodies of radius s and mass m, approaching each other on parallel
trajectories with relative velocity σ and impact parameter b. As they approach they will be
deflected towards one another by their mutual gravity, and we can equate energy in the initial
state with that at closest approach thus
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vmax is the velocity of each body at closest approach, where the planetesimals have a minimum sep-
aration ∆R. Note also that we have neglected the potential energy in the initial (widely separated)
configuration. Angular momentum conservation during the interaction gives
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We require ∆R < s for the bodies to collide, so if we substitute this expression for vmax in Equation
1 and set ∆R = s, we find that the largest impact parameter that leads to a collision is

b2 = s2 +
4Gms

σ2
. (4)

This is typically written in terms of the escape velocity from the point of contact v2esc = 4Gm/s,
so we can write the cross-section as

πb2 = πs2
(

1 +
v2esc
σ2

)
= πs2(1 + Θ) . (5)

The gravitational focusing factor Θ = v2esc/σ
2 is often referred to as the Safronov number. The

collision cross section therefore increases dramatically if the planetesimal disc is dynamically “cold”
(i.e., the velocity dispersion σ is low).

We now compute the growth rate due to collisions in a disc of planetesimals with velocity
dispersion σ and surface density Σp. We assume that the velocity dispersion is isotropic, so the

1For the purposes of this discussion we will assume that planetesimal collisions result in agglomeration, but in
doing so we have glossed over many details. In particular, the efficiency of mass retention depends on the material
strength of the colliding bodies, and many collisions have sufficient energy to fully disrupt the bodies. This is a topic
of continuing research, and recent calculations (e.g., Stewart & Leinhardt 2009) suggest that gravity “wins” only for
planetesimals of size & 10km.
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planetesimal disc has half-thickness Hp ' σ/Ω and the volume density of planetesimals is ρp =
Σp/Hp = ΣpΩ/σ. The growth rate due to collisions is therefore

dm

dt
= ρpσπb

2 ' ΣpΩπs2(1 + Θ) . (6)

For a sufficiently low velocity dispersion we can assume that Θ� 1 (i.e., we assume that gravita-
tional focusing dominates the cross-section), so
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The particle mass m ∝ s3, so we can substitute to find

dm

dt
∝ m4/3 . (8)

If we integrate this expression we find that m(t) diverges to infinity in a finite time. This phe-
nomenon is known as runaway growth, and demonstrates that if gravitational focusing dominates
then the growth of planetesimals can be very rapid.

In practice a few different factors act to limit the growth rate. The first is the planetesimal
velocity dispersion σ. In a real system the number of close encounters exceeds the number of
physical collisions, and repeated close encounters tend to increase the velocity dispersion and
limit the efficiency of gravitational focusing. Gas drag can damp the velocity dispersion in some
cases, but the limit of Θ � 1 is not always reached. In addition, the collision velocities can be
large enough to cause catastrophic disruption of the colliding bodies, and in these circumstances
collisional growth may be rather inefficient.

Even if runaway growth does occur, however, it can only proceed until the local mass reservoir
has been exhausted. Planetesimals can only accrete from within their gravitational region of
influence (the Hill radius), given by rH = a(m/M∗)

1/3 (where a is the orbital radius). The total
mass of planetesimals in this “feeding zone” is therefore

2πarHΣp = 2πa2
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The maximum attainable mass is achieved by accreting all of the planetesimals in the feeding zone,
and this so-called isolation mass is therefore given by

miso ' 2πa2
(
miso

M∗

)1/3

Σp . (10)

Neglecting factors of order unity, we find that

miso ' Σ3/2
p a3M

−1/2
∗ . (11)

For realistic disc models miso is therefore an increasing function of the orbital radius a, so we expect
more massive solid bodies to form at larger orbital radii. If we substitute typical parameters we
find that the isolation mass is small in the terrestrial planet zone (∼ 0.1M⊕), which suggests that
isolation plays an important role in the formation of terrestrial planets. Indeed, the final assembly
of Earth-like planets probably requires the agglomeration of several isolation-mass objects into
a single planet. Models suggest that terrestrial planet formation via repeated giant impacts of
isolation-mass objects takes ∼ 100Myr, which is broadly consistent with Solar System observations.

By contrast, estimates of the isolation mass at & 5AU are typically & 10M⊕, comparable to
(or greater than) the core masses of the Solar System giant planets. This suggests that isolation
may never actually occur in the formation of giant planets, and that their cores can plausibly be
built through collisional growth alone.
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2 Core accretion

Once we have formed solid planetary cores, the question which then arises is how (and if) the core
can subsequently accrete gas from the disc. The crudest statement we can make is that in order
to retain any gaseous envelope, the escape speed at the core surface must exceed the sound speed
in the gas. The escape speed from the surface of a single spherical body is

vesc =

√
2Gm

s
, (12)

and m = (4π/3)ρds
3 where, as before, ρd is the material density of the solid core. If we write the

sound speed in terms of the disc thickness
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then setting cs = vesc tells us that bodies will be able to accrete gas if

m &

(
3

32π

)1/2(H
R

)3 M
3/2
∗

ρ
1/2
d a3/2

. (14)

If we assume canonical numbers for a disc at 5AU (H/R = 0.1, ρd = 1 g cm−3), then the limiting
mass is m & 4 × 10−3M⊕. However, at this limit the planet will retain only a very tenuous
gas envelope; more detailed calculations require consideration of the hydrostatic structure of the
accreting envelope. This depends sensitively on a number of parameters (notably the opacity of the
accreting gas), and requires detailed calculations. The first self-consistent models of this process
were computed by Pollack et al. (1996), and many subsequent calculations have verified their basic
result. This is the so-called “core accretion” model for giant planet formation, which has three
distinct phases:

Core formation
This is the process discussed in Section 1. A solid core undergoes runaway growth, and the mass of
the planet is dominated by the core until it approaches its isolation mass. This phase is relatively
short (∼ 105yr), and core formation therefore occurs on a time-scale much shorter than the ∼1–
10Myr gas disc lifetime.

Hydrostatic growth
In this phase the planet accretes gas from the disc, and the envelope grows in hydrostatic equilib-
rium. However, continued accretion of gas requires the planet to contract, primarily as a result of
radiative cooling. While the solid core dominates the mass the planet can only contract gradually
(as only the envelope is compressible), and consequently accretion during this phase is slow. This
gradual increase in the planet mass increases the size of the feeding zone, allowing continued accre-
tion of planetesimals (and therefore the core mass also grows). This phase typically lasts ∼Myr,
and ends when the envelope mass approaches the core mass.

Runaway accretion
Once the gaseous envelope starts to dominate the planet’s mass the rate of accretion increases
dramatically, and we see runaway growth of the envelope. The accretion is initially limited only
by the rate at which the disc can feed gas to the planet, and growth is very rapid. This phase
is short, but increases the planet mass by an order of magnitude or more. Runaway accretion is
terminated by the dispersal of the gas disc, or for massive planets accretion can be shut off by
local tidal effects (torques from the planet on the disc). Once accretion ceases the “proto-planet”
undergoes gradual Kelvin-Helmholz contraction to reach its final, equilibrium structure.

Core accretion is a viable mechanism for the formation of gas giant planets, and has been ap-
plied very successfully to both Solar System formation and the formation of exo-planets. Various
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“flavours” of the core accretion scenario exist, making somewhat different assumptions, but all fol-
low the same qualitative picture. The major technical uncertainty in these models is the magnitude
of the opacity of the accreting gas. The thermal structure of the envelope depends critically on the
opacity, but because most of the opacity is due to dust the precise value of κ is difficult to estimate.
The resulting uncertainty in the accretion rate translates into a factor-of-several uncertainty in the
growth time-scale, with lower opacities promoting faster accretion. In addition, Type I migration
(see Lecture 5) is expected to be very important for objects in this size range, and it may be that
cores migrate out of the disc before they are able to accrete substantial envelopes.

Beyond these uncertainties, there are two major concerns about the viability of the core accre-
tion model. The first is that it assumes a starting point (a disc populated with copious planetesi-
mals) that may not be realistic. We know from Solar System studies (and debris disc observations)
that planetesimal-size objects are common, but as we saw in the last lecture their formation re-
mains something of a mystery. The second sticking point is the long duration of the hydrostatic
phase. The initial gas accretion rate is low, and for typical assumptions (about disc structure and
opacity) it takes 1–10Myr for planets to become massive enough to undergo runaway gas accretion.
This time-scale is uncomfortably close to the typical lifetimes of protoplanetary discs, though re-
cent developments suggest that pebble accretion (see Lecture 3) may speed up growth significantly
during this phase. This still requires that planetesimals and solid cores can form rapidly at the
beginning of the disc lifetime, however, and even with efficient pebble accretion the length of the
hydrostatic growth phase can remain problematic. Nevertheless, core accretion remains the most
plausible model for the formation of most of the planets that we observe.

3 Gravitational instability

An alternative to the process of core accretion is the idea that planets can form directly from
gravitational fragmentation of the disc. This idea has a long history, but was re-invented in its
modern form by Boss (1997). Formation of planets in this manner sidesteps many of the problems
associated with the “standard” core accretion theory we have described above, but instead raises
a number of other issues.

We first consider the basic physics of gravitational instability in gaseous discs. A formal ap-
proach considers the response of the disc to a small gravitational perturbation (see, e.g., Chapter
12 of Pringle & King), but a much simpler analysis yields the same qualitative result. If we consider
a patch of a disc of size l, then the mass of the patch is ∆M ' Σl2 and the gravitational potential
energy of the patch (due to its own gravity) is

UG ' −
G∆M2

l
' −GΣ2l3 . (15)

The thermal energy is

UT '
1

2
∆Mc2s '

1

2
Σl2c2s , (16)

and the rotational kinetic energy is

UR '
1

2
∆MΩ2l2 ' 1

2
ΣΩ2l4 . (17)

If the disc is to become unstable we require that gravity overcome pressure and rotational support,
so we require that

UG + UR + UT < 0 . (18)

Substituting, we find that

−2GΣ2l3 + ΣΩ2l4 + Σl2c2s = Σl2(−2GΣl + Ω2l2 + c2s) < 0 . (19)
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The term in brackets is quadratic in l, and has a minimum at l = GΣ/Ω2. The condition for
instability is met if the left-hand side is negative at this minimum, and therefore if

csΩ

GΣ
< 1 . (20)

This is approximately the famous Toomre (1964) condition for gravitational instability in a disc.
A more rigorous analysis yields the result that the disc is unstable to axisymmetric perturbations
if

Q =
csΩ

πGΣ
< 1 . (21)

The term on the left is usually referred to as the “Toomre Q” parameter, and lower values of Q give
rise to instability. This form intuitively makes sense: increasing the temperature or the rotation
rate increases Q and stabilises the disc, while increasing the disc mass lowers Q and makes the disc
more unstable.

We can use the Toomre criterion to estimate whether or not protostellar discs are likely to be
gravitationally unstable. The disc thickness H ' cs/Ω, the orbital frequency Ω2 ' GM∗/R

3 , 2,
and the disc mass Md ' πΣR2. We can therefore re-arrange the Toomre criterion to find that the
disc will be unstable if

H

R
.
Md

M∗
. (22)

As we have seen protoplanetary discs typically have H/R ∼ 0.1, so we therefore require that the
disc be at least ∼ 10% of the stellar mass in order to be unstable3. This is close to the upper
limit of observed disc masses, but it is not implausibly large. Indeed, as most of the stellar mass
must have been accreted through the disc at some point, most discs probably are massive enough
to become gravitationally unstable at large radius during the early stages of their evolution.

From this analysis we can also make a crude estimate of the typical fragment (planet) masses
which result from gravitational instability. As we have previously noted, the mass of the unstable
patch

∆M ' Σl2 , (23)

and the characteristic length-scale for the instability is l = GΣ/Ω2 ∼ H. We can therefore substi-
tute to find

∆M ' ΣH2 =

(
H

R

)2

ΣR2 . (24)

If we then take Md ∼ ΣR2, we can substitute from Equation 22 [Md ∼ (H/R)M∗] to find

∆M ∼
(
H

R

)3

M∗ ∼ 1MJup , (25)

(assuming a 1M� star and H/R ' 0.1). Note, however, that this is merely the initial fragment
mass, and bound objects continue to accrete mass from the disc. This highlights an important
feature of the gravitational instability model: it favours very massive planets. Also, as the planets
form directly from the protoplanetary disc they are likely to be gas rich. This may therefore provide
an alternative mechanism for the formation of gas giant planets, but the gravitational instability
model (in its simplest form) is not likely to form low-mass or terrestrial planets.

2Note that both of these equations are now only approximate, the disc’s contribution to the gravitational potential
is no longer negligible and the orbits are not strictly Keplerian. However, the near-Keplerian approximation is a
good one as long as Md � M∗.

3This is only an approximate condition. In particular, we should note that the Toomre criterion is a local condition,
while in Equation 22 we have expressed it in terms of global properties of the system (disc mass). In a real system
Q is a function of both position and time, and varies significantly across the disc.
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3.1 Thermodynamics and fragmentation

An important additional consideration is whether or not a gravitationally unstable disc will ac-
tually fragment. We first note that, formally, the Toomre criterion tells us when the disc will
become unstable to axisymmetric perturbations. However, a shearing disc becomes unstable to
non-axisymmetric perturbations at slightly larger values of Q (Q . 1.5–2), so we expect the initial
development of the gravitational instability (GI) to be in the form of spiral density waves in the
disc. These spiral density waves induce Reynolds and gravitational stresses in the disc, and these
stresses can transport angular momentum and drive accretion4.

Spiral density waves can transport angular momentum, but if we consider their behaviour in
detail it becomes clear that the development of GIs depends critically on the disc thermodynamics.
From the Toomre criterion we see immediately that colder discs are more unstable. However,
the instability results in heating, initially through adiabatic contraction of the unstable gas and
and later through the weak shocks induced by the spiral density waves. This in turn drives the
disc back towards stability, so the disc can only remain unstable if it is able to cool efficiently.
We therefore expect the disc to be able “self-regulate” towards a state where GI-induced heating
balances cooling, and Q ' 1. Numerical simulations have shown that discs can attain such a self-
regulated state, and that discs in this state can drive quasi-steady angular momentum transport
over long timescales (at least hundreds of orbital periods).

If we assume that the angular momentum transport and heating from GIs both occur locally
(i.e., that the GI behaves like an alpha-disc, with no wave-like transport of energy)5, and that
the disc self-regulates to thermal equilibrium, we can derive an expression for the disc’s cooling
time-scale. The thermal energy per unit area of the disc can be written as

Uth =
1

γ(γ − 1)
Σc2s , (26)

where γ is the ratio of specific heats of the gas. (γ = 5/3 for a monatomic gas, or 7/5 for a diatomic
gas.) In a Keplerian disc viscous heating (per unit area) occurs at a rate

dU

dt
=

9

4
νΣΩ2 =

9

4
αgc

2
sΣΩ , (27)

where αg refers to the “effective alpha” induced by the GI (through Reynolds and gravitational
stresses; see Lecture 2). If heating balances cooling, we therefore require the disc to cool on a
time-scale

tcool =
Uth

dU/dt
=

4

9γ(γ − 1)

1

αgΩ
. (28)

Alternatively, one can parametrize the effective transport induced by GIs as

αg =
4

9γ(γ − 1)

1

tcoolΩ
. (29)

In principle, this equation suggests that GIs can give rise to arbitrarily large values of αg, and
therefore transport angular momentum at very large rates. This is not the case, however, as we
can see by once again considering our unstable patch of disc. If cooling balances compressional
heating the patch is “quasi-stable”, but if the cooling rate becomes large (i.e., tcool becomes short)
the gas must contract very rapidly in order to maintain thermal equilibrium. For sufficiently
rapid cooling, pressure can no longer support the collapsing gas against (self-)gravity and the disc

4It is left as an exercise for the enthusiastic student to show that only trailing spiral waves transport angular
momentum outwards.

5Numerical simulations show that this approximation holds for low disc masses, Md . 0.2M∗; above this we
see significant power in low-order spiral modes (such as m = 2). These modes are typically short lived, leading to
outbursts of accretion, and massive discs are generally not able to attain a self-regulated state.
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fragments. Numerical simulations find that the “fragmentation boundary” occurs at tcoolΩ ∼ 5–10,
which in turn suggests that the maximum efficiency of angular momentum transport by GIs (in
the local limit) is αg ∼ 0.1.

In order for discs to fragment, we therefore have two conditions: (i) the disc must be massive
and/or cold enough to satisfy the Toomre criterion; and (ii) the local (radiative) cooling rate must
be high. Whether or not these conditions are ever satisfied in real discs remains a matter of some
debate, but some aspects of this problem have now become clear. The effects of stellar irradiation
mean that Q � 1 at small radii, and for discs around solar-mass stars gravitational instability is
invariably negligible in the inner ∼ 10AU, even in massive discs. At larger radii (& 50AU) the
most massive protostellar discs probably are gravitationally unstable, but it is not clear whether
or not they can cool rapidly enough to fragment. If the cooling time-scale is long then spiral
waves can drive rapid angular momentum transport, and this process is probably responsible for
most protostellar accretion at early times. There are few known examples of where discs are
unambiguously gravitationally unstable, but in the handful of cases where we measure Q ∼ 1 we
see evidence of spiral structures that are consistent with this picture (e.g., Paneque-Carreño et
al. 2021).

If instead the disc cools rapidly enough to fragment, the immediate outcome is the formation
of rather massive fragments (& 1MJup) at large radii (& 50AU). The subsequent evolution of these
fragments depends critically on the thermodynamics of both the disc and the collapsing “proto-
planets”. Most models find that cooling remains efficient after fragmentation, so any fragments that
form contract rapidly and continue to accrete gas from the disc (akin to the runaway phase of core
accretion). This leads to the formation of very massive objects, often in the brown dwarf regime (&
12MJup). The dynamical evolution of objects formed via disc fragmentation remains uncertain, with
rapid migration, dynamical ejection, and coalescence all likely to play a role. Current numerical
simulations disagree on the relative importance of these processes, and some other key physical
effects (such as infall on to the disc, which is almost certainly important during this epoch) remain
poorly understood. However, most current models suggest that where fragmentation does occur,
gravitational instability is more likely to form brown dwarfs or stellar companions than objects
of planetary mass (e.g., Kratter & Lodato 2016). Observational evidence is still limited, but a
few candidate fragmenting discs have now been observed with ALMA. Thus far these also point
towards brown dwarf- or stellar-mass objects as the main outcome of disc fragmentation (Tobin et
al. 2016; Ilee et al. 2018).
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