### Formation of Planetary Systems Lecture 3 - Dust dynamics & planetesimal formation

# Course Outline

- 5 Lectures, 2 hours each (with a break in the middle!).
  - I) Observations of planetary systems
  - 2) Protoplanetary discs
  - 3) Dust dynamics & planetesimal formation
  - 4) Planet formation
  - 5) Planetary dynamics
- Notes for each lecture will be placed on the course home page in advance - you may find it useful to annotate these as we go.
- These slides will also be posted online.
- Textbooks: Armitage Astrophysics of planet formation (CUP).
  Protostars & Planets series (VI 2014; VII 2023)

Course home-page: rdalexander.github.io/planets\_2023.html

### Planetesimal hypothesis

Safronov (1969): planets form from dust and ice grains that stick together to form ever larger bodies. **EVOLUTION OF THE PROTOPLANETARY CLOUD AND FORMATION OF THE EARTH AND THE PLANETS** 

V. S. Safronov

CASE FILE COPY

TRANSLATED FROM RUSSIAN

Published for the National Aeronautics and Space Administration and the National Science Foundation, Washington, D.C. by the Israel Program for Scientific Translations

### Planetesimal hypothesis

Safronov (1969): planets form from dust and ice grains that stick together to form ever larger bodies.

- We now think of a "three-stage" model for planet formation:
  - I) dust (~um)  $\rightarrow$  planetesimals (~km)

sticking due to contact forces during collisions.

- 3) planetesimals (~km) → proto-planets / cores (~1000km) gravity (between solids).
- 5) proto-planets / cores  $\rightarrow$  planets

gravity (gas accretion) and giant impacts.

### Solid Particles

Dust/rocks: small bodies, from sub-µm up to ~km size. Motion dominated by <u>aerodynamic</u> <u>drag</u>.

Planetesimals: ~10-1000km bodies. Interact with one another gravitationally – <u>N-body</u> <u>dynamics</u>. (Lecture 4)

**Planetary cores:** >1000km in size, approaching Earth mass. Interact gravitationally with the gas, leading to radial <u>migration</u> and <u>gas accretion</u>. (Lectures 4 & 5)

# Dust settling is now directly observed



Colours are scattered light; contours are ALMA 850µm (Villenave et al. 2020)

Drift velocity in flaring disc at 1AU



Drift velocity in flaring disc at 1AU



Ts

### Radial drift can create "dust traps"



- Armitage (2007)
- In general, radial drift moves particles towards pressure <u>maxima</u>.
- Can "trap" particles in local disc structures.

# Radial drift can create "dust traps"





Rice et al. (2004, 2006)

- In general, radial drift moves particles towards pressure <u>maxima</u>.
- Can "trap" particles in local disc structures.

# Dust trapping measured with ALMA





y [au]

#### Dullemond et al. (2018)

# Dust trapping measured with ALMA



In several cases the observed dust rings have:

 $\Delta R_{\rm d} < H_{\rm g}$ 

Dust structures narrower than gas structures – this requires <u>trapping</u>.

Dullemond et al. (2018)





Animations of numerical simulations by Paszun & Dominik (2008). Individual "particles" are spherical SiO<sub>2</sub> monomers of radius 0.6µm.

### Laboratory experiments



R Blum J, Wurm G. 2008. Annu. Rev. Astron. Astrophys. 46:21–56

### Laboratory experiments



Teiser & Wurm (2009)





### Vertical settling (& radial drift) leads to ...



### ...enhanced dust-to-gas ratio at disc midplane, causing...



### ...gravitational instability in the dust layer.

• Gravitational instability in the dust layer requires:

$$Q_{\rm dust} = \frac{\sigma\Omega}{\pi G \Sigma_{\rm dust}} = 1$$

- This implies a very thin dust layer, with  $\sigma \sim 10$  cm/s.
- Turbulence in real discs prevents the dust layer from ever becoming this thin. (In fact, the dust layer becomes Kelvin-Helmholz unstable & drives turbulence!)
- However, the idea is attractive because it allows km-size planetesimals to form rapidly from small dust grains, bypassing the problematic m-size regime.

### **Turbulent planetesimal formation**

- Disc *turbulence* has both positive and negative effects:
  - trapping of particles in long-lived pressure maxima, increasing collision rates.
  - high particle collision speeds, leading to more shattering/fragmentation during collisions.

- As in the G-W mechanism, for sufficiently large particle concentrations <u>collective effects</u> become important.
  - differential dust-gas motion gives rise to a number of different instabilities.

# Streaming instability



**Figure courtesy of Anders Johansen** 

- Enhancements in the local dust-to-gas ratio can drive a number of different instabilities, which drive both turbulence in the gas and clumping in the solids.
- Most well-known is the streaming instability, discovered by Youdin & Goodman (2005).

# Streaming instability



**Figure courtesy of Anders Johansen** 

- Solids lose angular momentum due to headwind, but headwind reduced when particles "clump".
- Leads to further clumping  $\rightarrow$  instability.
- Streaming instability most effective for particles with  $T_s = I$ . Still requires rapid growth up to ~cm to ~m



- Solids lose angular momentum due to headwind, but headwind reduced when particles "clump".
- Leads to further clumping  $\rightarrow$  instability.
- Streaming instability most effective for particles with  $T_s = I$ . Still requires rapid growth up to ~cm to ~m

### Planetesimal formation in turbulent discs



#### Johansen & Youdin (2007)

### Planetesimal formation in turbulent discs



### Pebble accretion



Lambrechts & Johansen (2012)