Formation of Planetary Systems

Lecture I - Observations of planetary systems

Course Outline

- 5 Lectures, 2 hours each (with a break in the middle!).
I) Observations of planetary systems

2) Protoplanetary discs
3) Dust dynamics \& planetesimal formation
4) Planet formation
5) Planetary dynamics

- Notes for each lecture will be placed on the course home page in advance - you may find it useful to annotate these as we go.
- These slides will also be posted online.
- Textbooks: Armitage - Astrophysics of planet formation (CUP).

Protostars \& Planets series (VI - 2014; VII - 2023)

Course home-page: rdalexander.github.io/planets 2023.html

The Solar System

The Solar System

Wikipedia Commons

The Solar System

	a AU	e	M_{p} $\mathrm{M}_{\mathrm{Jup}}$
Mercury	0.387	0.206	1.74×10^{-4}
Venus	0.723	0.007	2.56×10^{-3}
Earth	1.000	0.017	3.15×10^{-3}
Mars	1.524	0.093	3.38×10^{-4}
Jupiter	5.203	0.048	1.00
Saturn	9.537	0.054	0.299
Uranus	19.19	0.047	0.046
Nepture	30.07	0.009	0.054

The Solar System

- Gas giants (Jupiter \& Saturn):
- massive: >90\% of total planetary mass.
- primarily H/He, but metal-rich w.r.t. Sun.
- ~IOMEarth solid cores (probably!).
- Ice giants (Uranus \& Neptune):
- $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{CH}_{4}$, etc.
- ~IMEarth solid cores.
- Terrestrial planets (Mercury,Venus, Earth, Mars).
- Minor bodies: "dwarf planets", moons, asteroids, comets, Kuiper belt, Oort cloud.
- All 8 planets are nearly co-planar, with near-circular orbits.

The Solar System

- >99\% of total mass resides in the Sun.
- >99\% of total angular momentum resides in the planets (mostly in Jupiter).
- Planets very metal-rich w.r.t. Sun (though majority of heavy elements are in the Sun).
- Radioactive dating (e.g. ${ }^{87} \mathrm{Rb} \rightarrow{ }^{87} \mathrm{Sr}$) finds age of 4.57 Gyr .
- Planet formation processes must:
- grow solid bodies from ISM grains to >MEarth•
- separate mass from angular momentum.
- separate metals from H/He.

Methods of detecting extra-solar planets

- Directly:
- Light emitted/reflected by planet direct imaging
- Indirectly:
- Motion of star due to planet astrometry
radial velocity timing methods
- Obscuration of stellar light by planet transits
- Obscuration/amplification of background star by planet gravitational microlensing

Methods of detecting extra-solar planets

- Directly:
- Light emitted/reflected by planet direct imaging
- Indirectly:
- Motion of star due to planet astrometry radial velocity 1068 timing methods (inc TTVs) 43
- Obscuration of stellar light by planet transits

4128

- Obscuration/amplification of background star by planet gravitational microlensing 204

Methods of detecting extra-solar planets

- Directly:
- Light emitted/reflected by planet direct imaging
- Indirectly:
- Motion of star due to planet astrometry radial velocity timing methods (inc TTVs)

43

- Obscuration of stellar light by planet transits

4128

- Obscuration/amplification of background star by planet gravitational microlensing 204

Direct Imaging

- Planets are very faint. How faint?

- Fraction of star-light reflected by planet is*:

$$
\begin{aligned}
f & =A\left(\frac{\text { Cross-sect. area of planet }}{\text { Area of sphere radius } a}\right)=A\left(\frac{\pi R_{p}^{2}}{4 \pi a^{2}}\right) \\
& \Rightarrow \quad f_{\oplus} \simeq 2 \times 10^{-10} \quad f_{J u p} \simeq 1 \times 10^{-9}
\end{aligned}
$$

- Two problems for detecting in exo-planetary systems: brightness and contrast. Contrast is usually dominant.
*A is the albedo.

Direct Imaging

- Two ways around the contrast problem:
a) Look for planets around faint stars
b) Try to mask out star-light

Direct Imaging

- Two ways around the contrast problem:
a) Look for planets
around faint stars
a) Look for planets
around faint stars
b) Try to mask out star-light

Chauvin et al. (2004)

"Planet" around brown dwarf 2MI 207 discovered in 2004. Primary is $\sim 25 \mathrm{M}_{\text {Jup }}$; secondary is $\sim 5 \mathrm{M}_{\text {Jup }}$. Wide separation. More akin to a low-mass binary than a true planetary system.

Direct Imaging

- Two ways around the contrast problem:
a) Look for planets around faint stars
b) Try to mask out star-light

Planets around HR8799 discovered in 2008.
Star is $\sim 1.5 \mathrm{M}_{\bigcirc}$. Planet masses all estimated to be $\sim 10 \mathrm{M}_{\text {Jup }}$. Wide orbits - "d" is beyond orbit of Uranus.

Direct Imaging

- Two ways around the contrast problem:

HR 8799 Planetary System (Sept. 2008)

Direct Imaging

- Two ways around the contrast problem:
a) Look for planets around faint stars
b) Try to mask out star-light
HR8799: Wang, Marois+ (2017)

New facilities...

Young planets

Radial velocity methods

- Look for Doppler shifts caused by stellar reflex motion.
- RV surveys on-going since first detection in 1995. Now ~1000 detections: until Kepler, was most successful detection method.
- Originally pioneered by Latham, Mayor, Griffin and others. Most discoveries have come from two groups: Geneva \& Lick/California.

Radial velocity methods

Mayor \& Queloz (1995)

- Fit semi-major axis a, eccentricity e, and stellar mass Mpsini:

$$
K=v_{*} \sin i=\frac{1}{\sqrt{1-e^{2}}} \frac{M_{p} \sin i}{M_{*}} \sqrt{\frac{G M_{*}}{a}}
$$

- $\mathrm{K}_{\mathrm{Jup}} \sim 12 \mathrm{~m} / \mathrm{s} ; \mathrm{K}_{\mathrm{Earth}} \sim 10 \mathrm{~cm} / \mathrm{s}$.

First detections...

5I Peg b: Mayor \& Queloz (1995)
Planet mass 0.47M Jup, Period 4.23d

70 Vir b: Marcy \& Butler (1996) Planet mass 7.5M Jup, Period II7d

First detections...

5I Peg b: Mayor \& Queloz (1995)
Planet mass 0.47M Jup, Period 4.23d

Typical RV data

b

Data from Lovis et al. (2006); figure from Udry \& Santos (2007)

The cutting edge??

a Cen Bb: Dumusque et al. (2012)
Claimed planet mass I. I MEarth, P=3.24d, K=5 I cm/s But actually an artefact! (see Rajpaul et al. 2016)

Long surveys, long periods...

- 6-planet RV system around HD34445.
- I8 years of RV data; 333 Keck/HIRES spectra; ~1-2m/s precision.
- Periods range from 50-5700d; masses from 0.05-0.65Mjup; semimajor axes from 0.26-6.4AU.

Transit method

Credit: NASA/Kepler

- Detect dimming of light as planet passes in front of star.
- Dimming fraction f depends on planet size:

$$
f=\frac{\pi R_{p}^{2}}{\pi R_{*}^{2}}
$$

$$
\begin{aligned}
& f_{\text {Jup }} \simeq 0.01 \\
& f_{\oplus} \simeq 1 \times 10^{-4}
\end{aligned}
$$

Transit method

- Detect dimming of light as planet passes in front of star.
- Dimming fraction f depends on planet size:

$$
\begin{array}{ll}
f=\frac{\pi R_{p}^{2}}{\pi R_{*}^{2}} & f_{\text {Jup }} \simeq 0.01 \\
f_{\oplus} \simeq 1 \times 10^{-4}
\end{array}
$$

Transit method

- Detecting transits requires high precision:
- < 1% precision (\sim Jupiters) attainable from the ground.
- 0.01% precision (\sim Earths) requires us to go to space.
- Detecting transits is very unlikely: requires edge-on orbits:
- If every star had an Earth-like planet, we would observe transits in approximately I in 2000 stars.
- Searching for planets using transits requires us to observe lots of stars simultaneously.
- Transit depth tells us the planet's radius. Require follow-up RV measurements to determine mass and eccentricity.

Transit method

- Many current searches using transit methods.
- Most successful ground-based programme is SuperWASP (Wide-Angle Search for Planets).
- SuperWASP surveyed I/4 of the sky every night. Monitored several million stars every few minutes.
- Generates $50-100 \mathrm{~Gb}$ of data per night.

Credit: Richard West

Ground-based transit lightcurves

Next Generation...

Credit: ESO/Richard West

- Next Generation Transit Survey (NGTS) now operating at Paranal (first light Jan 2015).
- mmag precision; is yielding a large sample of super-Earths suitable for follow-up from the ground.

Ground-based cutting edge

Bayliss+ (2017)

- First exoplanet discovery from NGTS.
- 0.8 M jup planet in 2.65 d orbit around a M0/MI-type host star.
- Most massive planet known around an M-dwarf. NGTS is providing first large census of planets around low-mass stars.

Kepler

Kepler (NASA)

- Launched March 2009, 0.95m primary;"died" May 2013. Lived on as K2 until late 2018.
- $12^{\circ} \mathrm{FOV}, 42 \mathrm{CCD}$ camera. "Stared" at fixed patch of (blank) sky to obtain light-curves for $>150,000$ stars.
- Photometric precision as good as $\sim 10 \mathrm{ppm}$ (in some cases). Sensitive to sub-Earth-size planets.

Kepler light-curves

- Early data release (June 2010) focused on a few "hot Jupiters", to demonstrate precision.
- Fourth (\& final) major data release in January 2014. Total of ~ 4500 planet candidates, with >2000 now confirmed.

Kepler: first results

Kepler examples

Kepler-II: Lissauer et al. (20II) 6-planet system, periods 10-I20d. Masses range from 2-20MEarth.

Kepler-37: Barclay et al. (20|3)
3-planet system, periods I3.4, 2I.3, 39.8d. "b" is roughly the size of the Moon.

Summary of methods and biases

- First discoveries: 1995 (RV), 2005* (transit), 2008 (imaging).
- Now >3000 known exoplanets (+ ~2500 Kepler candidates):
- Direct Imaging
- Easiest to detect bright (large R_{p} and/or massive) planets far from star (large a).
- Radial velocity
- Easiest to detect massive planets close to star (short periods, small a).
- Transits
- Easiest to detect large (large R_{p}) planets close to star (short periods, small a).
*The first transiting planet was found in I999, but it was a known RV planet.

Known planets as of 1996

Data from exoplanet.eu

Known planets as of 2000

Data from exoplanet.eu

Known planets as of 2005

Data from exoplanet.eu

Data from exoplanet.eu

Known planets (as of 7 Oct 2015)

Data from exoplanets.org

Known planets (as of 7 Oct 2015)

Data from exoplanets.org
"Hot Jupiters" Known planets (as of 7 Oct 2015)

"Super-Earths" Orbital Separation / AU
Data from exoplanets.org

Selection biases

Known planets (as of 7 Oct 2015)

$K \propto M_{p} \sin i a^{-1 / 2}$
$M_{p} \sin i \propto K a^{1 / 2}$

Selection biases

Known planets (as of 7 Oct 2015)

Selection biases

Selection biases

What fraction of stars host planets?

What fraction of stars host planets?

- Selection biases mean that measurements of f_{p} must be qualified (but detection methods are complementary).
- Current results:
- 5 -I 0% of FGK stars host a planet with $M_{p} \geq M_{\text {Jup }}$ at a $\leq 3 A U$.
- $>50 \%$ of $F G K$ stars host a planet with $M_{P} \geq I M_{\oplus}$ and $P \leq 100 \mathrm{~d}$.
- $\sim 90 \%$ of M stars host a planet with $R_{p} \geq 0.5 R_{\oplus}$ and $P \leq 50 \mathrm{~d}$.
- Extension of these results to larger radii will take time. Future missions will probe lower masses, but orbital periods at large ($>\mathrm{AU}$) radii are long.
- Can currently say that $f_{p} \geq 0.5$ for sun-like stars. Seems likely that the true value is very close to I.

Statistical properties of exoplanets

Planet mass function

Kepler: Petigura et al. (2013)

- Distribution of planet masses increases to low M_{p}.
- Apparent "plateau" in mass (size) function below a few times the size of Earth.

Mass-radius relation

Figure courtesy of Didier Queloz

- Tight correlation for rocky \& giant planets; large scatter in intermediate region.
- Dominant source of error is often stellar properties.

Mass-radius relation

Lissauer et al. (2013)

- Comparison to models possible, but in many cases mean density not strongly constraining.
- However, some exoplanets are unambiguously rocky!

Eccentricities

All known planets (as of 1 Oct 2012) with $M_{p} \sin i>3.2 M_{\oplus}$

Data from exoplanets.org

Radial distribution

RV: Wright et al. (2009)

- Radial distribution is "smooth", though data are limited.
- Evidence of excesses of $\sim J u p i t e r s ~ a t ~ ~ 0.05 A U ~ a n d ~$ ~I-2AU in RV data.
- "Pile-up" of hot Jupiters only seen in metal-rich stars.

Host star netadincity

- Probability of hosting giant planets increases very sharply with host star metallicity.
- Appears not to hold for Neptune-mass planets.

Host star metallicity

Dawson \& MurrayClay (2013)

- Systematic differences between RV \& Kepler samples.
- Most likely explanation is metallicity: Kepler stars are more distant than RV sample, with lower <Z>.

Rossiter-McLaughlin effect \& obliquity

Albrecht et al. (2009)

Triaud et al. (2010)

- Line shifts during transit (R-M) allow us to measure relative inclination of orbit and stellar rotation axis.
- Significant fraction (~10-50\%) of short-period gas giants show high (projected) obliquities.

Kepler-I6b: the first "Tatooine"

Kepler-16b: Doyle et al. (20II)

Exoplanet Resources

This encyclopaedia provides latest detections and data announced by professional astronomers about exoplanetary systems. It is about objets lighter than 60 Jupiter masses, which are orbiting stars/brown dwarf or are free floating. It provides also a database about planets in binary systems, and a database about circumstellar disks.

Established in February 1995 Developed and maintained by the exoplanet TEAM
Last update: Nov. 6, 2023 currently 5529 planets.
The catalog: Filter, sort, export
The plots: Online plotting tool

Exoplanet Resources

ipac

NASA EXOPLANET ARCHIVE
A SERVICE OF NASA EXOPLANET SCIENCE INSTITUTE

EXOPLANET EXPLORATION Planets Beyond Our Solar System

