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Disc evolution is driven by accretion & mass-loss.

Accretion can be due to transport (turbulence) or loss
(winds) of angular momentum.

Mass-loss can be via magnetised or thermal
(photoevaporative) disc winds.




Mass-loss is important for planetesimal formation
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Villenave+ (2020)

Hutchison & Clarke (2021)

* Winds (both magnetic and photoevaporative) are launched from the upper layers of the
disc, which are depleted of (large) dust (e.g., Throop & Bally 2005).

* Gas density in winds is low, and flow velocities are modest, so only small grains (<10um)
can be entrained in disc winds.

* Disc winds preferentially remove gas, so winds increase the dust/gas ratio.
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Disc evolution is slow, but disc dispersal is fast

102 - ' N L ' ! ' ' ! ! L ! ! ! ' ' ' ML ! N ' ! ! ! L N ' ! ' ' ' ! ': |
[ ¢ - M-Tvpe @ Lup Class III ——
" ' u ol ! g FGKY,I.;. ] 1()2 @  Lup Class IT (A+16) —
..‘ - . ‘ ¢ “LYPe] o Lup Class IT (S+20) © %o
. ¢ = " ' X AB-Type | | o — o —0—o o
¢ : —— T2 o
¢ ¢ Z 05— o=
¢ 1<>7 | 101t —t=ge . TR L
X & i % ——
— =
_________________________________________________________ -] — ——
14 y =, o — —o—g. = O
2 23 7 06— -0,
$ Q <>$ tt X E % ' = 0 o—o—0- °
t tfx 10 " o ——
t .. = o —0—
- —-
" X ); [ | s | |mmem————————a = ———F e e e e YW ——————————
. X - 1 1()_1 T o) ¥ .]1555‘2%-3338'23
¢ . .
n X o i
Sy 107 NO Lup-é o— MU Lup
10—3 PP | . . . — . . : ——— . ; 3 . —a ; N . ———— l()_z — 1_ " " N " PR f 1
10° 10" 10° 10° 10* 10~ 10"
Adge (Mvr Stellar Mass | M,
ge (Myr) Hardy+ (2014) Mol Lovell+ (2021)

Large body of observational work (back to Strom+ |1989) shows that the final
“transition” from disc-bearing to disc-less young stars is rapid.

Final stage of evolution is discontinuous: upper limits on both gas and dust in
Class llls are orders of magnitude below disc masses in the Class |l phase.

Two time-=scales: rapid disc clearing (at all radii!) after lifetime of ~Myr.



How the gas disc is dispersed matters
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* Dust dynamics: inside-out disc clearing “sweeps up” dust. Dispersal can create
structures in the dust and planetesimals. (Initial conditions for debris discs?)

 Planet migration: disc dispersal halts migration, and the mode of dispersal can
create features in the radial distribution of planets.

* Toy models of disc dispersal (e.g., exponential decay) can give you the wrong answers.



S0, how do discs get dispersed!?



External photoevaporaticn drives significant mass-loss
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* Long understood that discs in high-UV environments (e.g., the Orion nebula) are
dominated by external photoevaporation (e.g., O’'Dell+ 1993; Johnstone+ 1998).

* Recently it has become clear that mass-loss rates are significant even in smaller
clusters (e.g., Haworth+ 2018, 2023; Winter+ 2022).

* Many (most?) planetary systems form in clusters, with relatively high UV fluxes.



Mass-loss = disc winds

Nakatani+ (2018) Béthune+
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* Two ways to launch a wind from a disc:

- thermal energy input (“evaporation’)

- magnetic energy input ("MHD winds”)

* Thermal winds are “pure” mass loss, but magnetised winds also remove
angular momentum (and thus drive accretion).



Accretlon remalns the dominant uncertainty
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* Simulations now suggest that protoplanetary disc accretion is mainly wind-driven.

* Observationally, there is evidence for both turbulent and wind-driven accretion.

* Accretion alone cannot drive rapid disc dispersal; mass-loss in winds (either MHD or

photoevaporative) is required.




Modern disc wind models

Nakatani+ (2018) Béthune+
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e Calculations are now relatively mature: different groups agree (more or

less!?!) on wind properties for a given set of inputs. \
e Key physical uncertainties are irradiation and B-fields. Forthcoming
papers from
* These (probably) need to be determined observationally. Nakatani+ &

Sellek+



Disc winds: open questions

Photoevaporation MHD winds
* What high-energy radiation field * What should the input B-field be!?
actually reaches the disc!? (Geometry; zero vs non-zero net
(Flux and spectrum) flux; boundary conditions)
* Relative importance of internal vs * What is the typical lever arm!?

external irradiation.

* How does the B-field change as
* How do these factors change the disc evolves / dissipates!
with time!
(Do we always have significant
photoevaporation, or does it
mainly occur at late times / in
evolved discs?)

* |mpact of environment!



Iwo time-scales = two ways to observe

Instantaneous
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* Emission lines provide kinematic
probes of disc & wind structure.

* Measure wind density,
temperature & velocity directly.
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* Demographics probe disc
evolution on Myr timescales.

* Measure (sort of) time-averaged
rates of mass and ang. mom loss.

[See also Benoit’s talk!]




Accretion demographics



How do discs accrete?

Manara+ (2023, PP7)
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Two competing pictures of protoplanetary discs: turbulent vs wind-driven accretion.

Still the dominant uncertainty in understanding disc dispersal.

Observational evidence for both processes;in reality both may occur in different
regions (or at different times) in the same disc.

Can we tell which (if any) is the dominant mode of accretion!?



A statistical look at accretion rates
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See also Somigliana+ (2023); Weder+ (2023), etc. RDA+ (2023)



Normalised probability
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A statistical look at accretion rates
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A statistical look at accretion rates

“Observational” scatter only
“Pessimistic” scatter in model parameters

~300 objects with measured
- Shaded regions denote accretion rates should be(!)
[ 25th & 75th percentiles of . . .
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A statistical look at accretion rates
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Current sample sizes are ~100 objects, so accretion rate observations do not (yet)
distinguish between wind-driven and viscous accretion (both models fit).

Statistically significant preference for lower photoevaporation rates.

Additional observables can break degeneracies (e.g.,, AGE-PRO & DECO surveys), but

also introduce more systematics (disc masses, etc.).
RDA+ (2023)



log (alpha)

Turbulent er and wind-driven accretion

Tong+ (submitted)
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* New “hybrid” disc evolution models, which incorporate viscous accretion, MHD
winds, and photoevaporation in different regions of the disc.

* |nterplay is complex, with some surprising results - paper will be on arXiv soon!



Observations of disc winds



Resolved winds/outflows in CO
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* ALMA allows us to map molecular jets/outflows: measure density, velocity / rotation
profiles, etc.

* Must be magnetically launched, and mass loss rates are high.

* Thus far the well-characterised sample is mostly Class 0/l discs; not many Class lIs yet...



Blue-shifted emission in atomic lines...
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Figure 2. Representative examples of [O I] line profiles, showing “BC+NC”-type LVC (DG Tau and CW Tau), “SCJ”-type LVC (HN Tau and Sz 98), and “SC”-type
LVC (V836 Tau and TW Hya) by color-coding their HVC and LVC components as described in Section 3.3: HVCs are in green, LVC-BC are in red, LVC-NC in light
blue, and LVC-SC and SCIJ in dark blue. Line profiles for the entire sample are shown in Appendix A. Where multiple are present, we mark with a dashed black line
the most blueshifted HVC component used in the analysis.
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* |Large samples of spatially unresolved observations (e.g., in [Ol]).
* Low-velocity components (LVCs) divide into broad and narrow components.

* Broad LVCs probably magnetic origin; narrow LVCs uncertain.



...and in ionized lines

[Nell] 12.81um line profile
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* Blue-shifted [Nell] emission (Av ~ 10km s~ ') observed from several
nearby discs (e.g., Pascucci+ 2009; Sacco+ 2012).

 Unambiguous detection of a slow, ionized wind.



An evolutionary sequence(?)
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Spatially-resolved line emission

Fang+ (2023)
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e VLT-MUSE IFU observation of [OI] 6300A line in TW Hya.

* Line shows a small blue-shift (0.8km/s), and 80% of the [OIl] flux comes from within
| AU of the star.

* Consistent with a simple magnetothermal wind model; difficult to reconcile with
photoevaporation (but see Rab+ 2023).



JWST-MIRI observations of T Cha

Bajaj+ (2024)
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* First detection of four noble gas forbidden lines in a disc.




JWST-MIRI observations of T Cha

Bajaj+ (2024)

3.0
50| PAH

1.0

Flux (Jy)

0.5

v
.’ M-—u

[Ar 1]

PAH

PAH
[Ar 111]

PAH

PAH

[Ne Il]

[Ne lll]

6

10

* [Nell] emission is (just!) spatially resolved

with the MIRI IFU.

e Line extended in a different direction to

the continuum.

* Spatial extent + multiple different lines
strongly constrain density and temperature

in the wind.
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Modelling the line

Sellek+ (2024)
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* Analytic disc wind model + Monte Carlo radiative transfer.

* Aim to match line ratios, blue-shifts and spatial emission maps.

* Line ratios require a hard(ish) spectrum, with more X-rays than UV.



Modelling the line emission

Sellek+ (2024)
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* Resolving [Nell] but not [Arll] requires quite specific parameters.

* Reproducing all diagnostics simultaneously requires low ionization in the
wind, inner radius ~| AU, and relatively high mass-loss rates.



T Cha: summary

Bajaj+ (2024), Sellek+ (2024)
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* Measured wind properties (especially Rin ~ | AU) are consistent with expectations
for photoevaporation (with a fairly high wind rate).

e MHD wind not ruled out, but not required to explain the data.

* Only one disc; larger samples are coming...



Disc dispersal: summary & open questions

¢ Disc dispersal has important consequences for planetesimals

e Accretion physics remains the dominant uncertainty
[If accretion is wind-driven, then many of our models of planetesimal formation (and
planet migration) are incomplete, or just wrong.]

¢ Disc evolution is gradual, but disc dispersal happens suddenly

¢ Disc evolution & dispersal depend on the stellar environment
[How much can we learn from studying nearby regions like Lupus or Taurus if most
planets form in regions like Orion!?]

* We are moving into an era where we can observe disc winds directly,and where we
can study disc populations statistically.






