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Disc evolution is driven by accretion & mass-loss.

Accretion can be due to transport (turbulence) or loss 
(winds) of angular momentum.

Mass-loss can be via magnetised or thermal 
(photoevaporative) disc winds.

Manara+ (2023, PP7)



Mass-loss is important for planetesimal formation

• Winds (both magnetic and photoevaporative) are launched from the upper layers of the 
disc, which are depleted of (large) dust (e.g., Throop & Bally 2005).

• Gas density in winds is low, and flow velocities are modest, so only small grains (≲10μm) 
can be entrained in disc winds.

• Disc winds preferentially remove gas, so winds increase the dust/gas ratio.

Hutchison & Clarke (2021)Villenave+ (2020)



Disc evolution is slow, but disc dispersal is fast

• Large body of observational work (back to Strom+ 1989) shows that the final 
“transition” from disc-bearing to disc-less young stars is rapid.

• Final stage of evolution is discontinuous: upper limits on both gas and dust in 
Class IIIs are orders of magnitude below disc masses in the Class II phase. 

• Two time-scales: rapid disc clearing (at all radii!) after lifetime of ~Myr. 

Hardy+ (2014) Lovell+ (2021)



How the gas disc is dispersed matters

• Dust dynamics: inside-out disc clearing “sweeps up” dust. Dispersal can create 
structures in the dust and planetesimals. (Initial conditions for debris discs?)  

• Planet migration: disc dispersal halts migration, and the mode of dispersal can 
create features in the radial distribution of planets. 

• Toy models of disc dispersal (e.g., exponential decay) can give you the wrong answers. 

RDA & Pascucci (2012)RDA & Armitage (2007)



So, how do discs get dispersed?



External photoevaporation drives significant mass-loss

• Long understood that discs in high-UV environments (e.g., the Orion nebula) are 
dominated by external photoevaporation (e.g., O’Dell+ 1993; Johnstone+ 1998). 

• Recently it has become clear that mass-loss rates are significant even in smaller 
clusters (e.g., Haworth+ 2018, 2023; Winter+ 2022).  

• Many (most?) planetary systems form in clusters, with relatively high UV fluxes.  

Mauco+ (2023)
σ Orionis 

Aru+ (2024) - Orion Nebula Cluster



Mass-loss = disc winds
Nakatani+ (2018) Béthune+ 

(2017)

• Two ways to launch a wind from a disc:
- thermal energy input (“evaporation”)

- magnetic energy input (“MHD winds”)

• Thermal winds are “pure” mass loss, but magnetised winds also remove 
angular momentum (and thus drive accretion). 



Accretion remains the dominant uncertainty

• Simulations now suggest that protoplanetary disc accretion is mainly wind-driven. 

• Observationally, there is evidence for both turbulent and wind-driven accretion. 

• Accretion alone cannot drive rapid disc dispersal; mass-loss in winds (either MHD or 
photoevaporative) is required. 

Gressel+ (2015) Flaherty+ (2024) - IM Lup



Modern disc wind models
Nakatani+ (2018) Béthune+ 

(2017)

• Calculations are now relatively mature: different groups agree (more or 
less!?!) on wind properties for a given set of inputs. 

• Key physical uncertainties are irradiation and B-fields.

• These (probably) need to be determined observationally.

Forthcoming 
papers from 

Nakatani+ & 
Sellek+  



Disc winds: open questions
Photoevaporation

• What high-energy radiation field 
actually reaches the disc? 
(Flux and spectrum)

• Relative importance of internal vs 
external irradiation.

• How do these factors change 
with time? 
(Do we always have significant 
photoevaporation, or does it 
mainly occur at late times / in 
evolved discs?)

MHD winds

• What should the input B-field be? 
(Geometry; zero vs non-zero net 
flux; boundary conditions)

• What is the typical lever arm?

• How does the B-field change as 
the disc evolves / dissipates?

• Impact of environment?



Two time-scales = two ways to observe
Instantaneous

• Emission lines provide kinematic 
probes of disc & wind structure.

• Measure wind density, 
temperature & velocity directly.

de Valon+ (2020)

Evolutionary

• Demographics probe disc 
evolution on Myr timescales.

• Measure (sort of) time-averaged 
rates of mass and ang. mom loss.

Tabone+ (2022)

[See also Benoît’s talk!]



Accretion demographics



How do discs accrete?

• Two competing pictures of protoplanetary discs: turbulent vs wind-driven accretion.

• Still the dominant uncertainty in understanding disc dispersal.

• Observational evidence for both processes; in reality both may occur in different 
regions (or at different times) in the same disc.

• Can we tell which (if any) is the dominant mode of accretion?

Manara+ (2023, PP7)



A statistical look at accretion rates
Viscous Wind-driven

RDA+ (2023)See also Somigliana+ (2023); Weder+ (2023), etc.



A statistical look at accretion rates
Viscous Wind-driven N = 250
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A statistical look at accretion rates
Viscous Wind-driven N = 250
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RDA+ (2023)

“Observational” scatter only
“Pessimistic” scatter in model parameters

Shaded regions denote 
25th & 75th percentiles of 
the distributions. 

~300 objects with measured 
accretion rates should be(!) 

enough to distinguish 
between these models. 



A statistical look at accretion rates

• Current sample sizes are ~100 objects, so accretion rate observations do not (yet) 
distinguish between wind-driven and viscous accretion (both models fit).

• Statistically significant preference for lower photoevaporation rates.

• Additional observables can break degeneracies (e.g.,  AGE-PRO & DECO surveys), but 
also introduce more systematics (disc masses, etc.).

RDA+ (2023)

Pr
ob

ab
ili

ty

Wind rate [M☉yr-1]

Pr
ob

ab
ili

ty

Scatter in initial accretion rate [dex]



Turbulent or and wind-driven accretion

• New “hybrid” disc evolution models, which incorporate viscous accretion, MHD 
winds, and photoevaporation in different regions of the disc. 

• Interplay is complex, with some surprising results - paper will be on arXiv soon!

Tong+ (submitted)



Observations of disc winds



• ALMA allows us to map molecular jets/outflows: measure density, velocity / rotation 
profiles, etc.

• Must be magnetically launched, and mass loss rates are high.

• Thus far the well-characterised sample is mostly Class 0/I discs; not many Class IIs yet…

Resolved winds/outflows in CO

de Valon+ (2020) DG Tau B HH212Tabone+ (2017)



Blue-shifted emission in atomic lines…

• Large samples of spatially unresolved observations (e.g., in [OI]).

• Low-velocity components (LVCs) divide into broad and narrow components.

• Broad LVCs probably magnetic origin; narrow LVCs uncertain. 

Banzatti+ (2019)



…and in ionized lines

• Blue-shifted [NeII] emission (                         ) observed from several 
nearby discs (e.g., Pascucci+ 2009; Sacco+ 2012).

• Unambiguous detection of a slow, ionized wind.

RDA+ (PPVI)
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An evolutionary sequence(?)
Pascucci+ (2020)



• VLT-MUSE IFU observation of [OI] 6300Å line in TW Hya.

• Line shows a small blue-shift (0.8km/s), and 80% of the [OI] flux comes from within 
1AU of the star.

• Consistent with a simple magnetothermal wind model; difficult to reconcile with 
photoevaporation (but see Rab+ 2023).

Spatially-resolved line emission
Fang+ (2023)



• First detection of four noble gas forbidden lines in a disc.

JWST-MIRI observations of  T Cha

R~3000

Bajaj+ (2024)



JWST-MIRI observations of  T Cha

R~3000

Bajaj+ (2024)

• [NeII] emission is (just!) spatially resolved 
with the MIRI IFU.

• Line extended in a different direction to 
the continuum.

• Spatial extent + multiple different lines 
strongly constrain density and temperature 
in the wind.



• Analytic disc wind model + Monte Carlo radiative transfer.

• Aim to match line ratios, blue-shifts and spatial emission maps. 

• Line ratios require a hard(ish) spectrum, with more X-rays than UV. 

Modelling the line emission
Sellek+ (2024)



• Resolving [NeII] but not [ArII] requires quite specific parameters.

• Reproducing all diagnostics simultaneously requires low ionization in the 
wind, inner radius ~1AU, and relatively high mass-loss rates. 

Modelling the line emission
Sellek+ (2024)



• Measured wind properties (especially Rin ~ 1AU) are consistent with expectations 
for photoevaporation (with a fairly high wind rate).

• MHD wind not ruled out, but not required to explain the data.

• Only one disc; larger samples are coming…

T Cha: summary
Bajaj+ (2024), Sellek+ (2024)



• Disc dispersal has important consequences for planetesimals 

• Accretion physics remains the dominant uncertainty 
[If accretion is wind-driven, then many of our models of planetesimal formation (and 
planet migration) are incomplete, or just wrong.]

• Disc evolution is gradual, but disc dispersal happens suddenly 

• Disc evolution & dispersal depend on the stellar environment 
[How much can we learn from studying nearby regions like Lupus or Taurus if most 
planets form in regions like Orion?]

• We are moving into an era where we can observe disc winds directly, and where we 
can study disc populations statistically.

Disc dispersal: summary & open questions




