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ABSTRACT
We consider the dynamical evolution of a disk of stars orbiting a central black hole. In particular, we focus on

the effect of the stellar mass function on the evolution of the disk, using both analytic arguments and numerical
simulations. We apply our model to the ring of massive stars at ≃ 0.1pc from the Galactic Center, assuming that
the stars formed in a cold, circular disk, and find that our model requires the presence of a significant population
of massive (> 100M⊙) stars in order to explain the the observed eccentricities of 0.2–0.3. Moreover, in order to
limit the damping of the heavier stars’ eccentricities, we also require fewer low-mass stars than expected from
a Salpeter mass function, giving strong evidence for a significantly “top-heavy” mass function in the rings of
stars seen near to the Galactic Center. We also note that the maximum possible eccentricities attainable from
circular initial conditions at ages of< 10Myr are around 0.4–0.5, and suggest that any rings of starsfound with
higher eccentricities were probably not formed from circular disks.
Subject headings: stellar dynamics — Galaxy: center — stars: luminosity function, mass function — methods:

N-body simulations

1. INTRODUCTION

The relative proximity of the Galactic Center (henceforth
GC) provides a unique opportunity for “close-up” study of
processes that are expected to be crucial in the formation of
galaxies and black holes, yet remain essentially unobserv-
able in more distant galaxies. Recent advances in telescope
technology have enabled us to resolve individual stars in the
crowded GC environment, and the development of adaptive
optics has allowed determination of both velocities and posi-
tions of such stars to be made with ever-increasing accuracy
(e.g. Ghez et al. 1998; Genzel et al. 2003; Ghez et al. 2005;
Paumard et al. 2006). These new data have presented several
puzzles, notably the presence of a number of B-type stars very
close (. 0.01pc) to the GC, and also the detection of one, and
possibly two, coherent rings of massive O- & B-type stars at
somewhat larger radii of≃ 0.1pc (Genzel et al. 2003; Pau-
mard et al. 2006). These stars are known to be young, and are
therefore presumed to be the result of recent star formationat
or close to the GC. The environment at the GC is vastly dif-
ferent from the typical environment of ongoing star formation
in the solar neighborhood, with much larger pressures, densi-
ties and temperatures, as well as strong tidal forces, so study
of the formation of these stars raises a number of interesting
issues (see also the recent review by Alexander 2005).

A popular theory for the origin of these rings of stars is that
they formed via fragmentation of accretion disks around the
central black hole (e.g. Levin & Beloborodov 2003; Goodman
2003; Goodman & Tan 2004; Nayakshin 2006). The stars are
assumed to form on nearly circular orbits, as a result of grav-
itational instabilities in the disk. Nayakshin (2006) suggests
that this will lead to a stellar mass function that is signifi-
cantly more top-heavy (i.e. with significantly more massive
stars) than that seen elsewhere in the Galaxy, and recent ob-
servational studies suggest that this is indeed the case (Nayak-
shin & Sunyaev 2005; Paumard et al. 2006). Other sugges-
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tions for the formation of these stellar rings exist, however,
most notably the infalling star cluster scenario (e.g. Gerhard
2001; McMillan & Portegies Zwart 2003; Berukoff & Hansen
2006). This scenario can also result in a significantly top-
heavy mass function, due to mass segregation and stellar col-
lisions within the cluster (e.g. Bonnell & Davies 1998; Gürkan
& Rasio 2005; Freitag, Gürkan & Rasio 2006).

In this paper we consider the dynamical evolution of a ring
of stars such as those observed around the GC. Previous mod-
els of the stellar dynamics of such a ring have considered a
single stellar mass population (Nayakshin & Cuadra 2005),
or the effect of processes such as resonant relaxation (Hop-
man & Alexander 2006). Here we investigate the effects of
the stellar mass function on the evolution of the system, and
use observational determinations of the stellar orbital parame-
ters to constrain the mass function of the stellar rings. We find
that the distribution of eccentricities can tell us about both the
upper and lower ends of the stellar mass function, and discuss
the consequences of this result for theories of star formation in
the GC environment. The structure of the paper is as follows.
In Section 2 we present a simple analytic model for the dy-
namical evolution of a mass-segregated ring of stars orbiting
a massive central black hole. In Section 3 we describe nu-
merical simulations of such a system, and compare the results
to the predictions of our analytic model. We then apply our
model to the GC system (Section 4), and derive constraints on
the initial conditions by comparing our model to recent obser-
vations. We discuss the consequences of our results, and the
limitations of our analysis, in Section 5, and summarize our
conclusions in Section 6.

2. ANALYTIC MODEL

Let us first consider the relaxation of a system ofN∗ stars
of massM∗, orbiting in a disk around a black hole of mass
Mbh (whereMbh ≫ N∗M∗). The disk (or ring) is centered
at radiusR0, with a radial width∆R and a one-dimensional
stellar velocity dispersionσ∗. We make the simplifying as-
sumption that the velocity dispersion is isotropic. This isnot
strictly valid, but it has been shown that the ratio of the radial
and vertical velocity dispersions cannot become larger than
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3 without the system becoming unstable (Kulsrud, Mark &
Caruso 1971; Polyachenko & Shukman 1977). The relaxation
time for such a system is given by

trelax =
Cσ3

∗

G2M∗ρ∗ lnΛ∗

, (1)

(e.g. Binney & Tremaine 1987; Papaloizou & Terquem 2001)
whereρ∗ is the stellar density, lnΛ∗ is the Coulomb logarithm
andC is an order-of-unity constant that depends on the geom-
etry of the system. (For a spherical systemC ≃ 0.34, Binney
& Tremaine 1987.) The stellar density is given by

ρ∗ =
N∗M∗

2πR0∆R×2H
, (2)

whereH is the scale-height of the disk. We can expressH =
σ∗/Ω in terms of the stellar velocity dispersion and the orbital
angular velocity of the disk,Ω, and so for a Keplerian disk we
have

trelax =
C1R0∆Rσ4

∗

G2N∗M2
∗ lnΛ∗

torb , (3)

wheretorb = 2π/Ω is the Keplerian orbital period atR0, and we
have absorbed a factor of 2 into the constant such thatC1 = 2C.
Consequently, the relaxation of the system is governed by

dσ∗

dt
=

G2N∗M2
∗ lnΛ∗

C1R0∆Rtorbσ3
∗

. (4)

This form for dσ∗/dt allows the velocity dispersion to in-
crease indefinitely, and in reality a cooling term should be
included. However, this cooling arises when stars at the high-
velocity tail of the distribution begin to escape from the sys-
tem, and is only significant once the velocity dispersion be-
comes comparable to the orbital velocity. In our application
of this model to the GC we are only interested in the behavior
of the system at relatively early times, and in this case this
simpler treatment remains accurate. The effects of this sim-
plification are discussed in Section 5.

We now extend this analysis to consider two different mass
classes of stars,M1 andM2, with M1 > M2 and velocity dis-
persionsσ1 andσ2, stellar numberN1 andN2, and mean en-
ergies per particleE1 = 3M1σ

2
1/2 andE2 = 3M2σ

2
2/2, respec-

tively. Each mass class is subject to the “self-relaxation”de-
scribed above, but in addition energy can be exchanged be-
tween the classes. This type of analysis has previously been
used to study the evolution of a distribution of planetesimals
around the sun, and detailed calculations have been made (e.g.
Stewart & Wetherill 1988; Lissauer 1993; Goldreich, Lith-
wick & Sari 2004)2. Goldreich et al. (2004) point out that
the treatment of this problem depends on whether the velocity
dispersion of the light stars,σ2, is greater than or less than
the Hill velocity of the heavy stars,vH. The Hill velocity is
defined as

vH = ΩRH , (5)

where the Hill radiusRH = R0(M1/Mbh)1/3. In the former case,
referred to as the “dispersion-dominated” regime, the veloc-
ity dispersion is a good approximation for the speed of a sin-
gle star and scattering encounters are well approximated by
two-body dynamics. However, in the latter case, known as
the “shear dominated” regime, the tidal gravity of the central

2 In the planet formation context, the “self-relaxation” is often referred to
as “viscous stirring”.

black hole is important: in this regime the interactions are
rather more subtle.

In applying our model to the GC system (see Sections 3 &
4), we adoptMbh = 3×106M⊙ andR = 0.1pc. Consequently,
the Keplerian orbital speed isvK ≃ 360km s−1, and the Hill
velocity scales as

vH = 7.3

(

M1

25M⊙

)1/3

kms−1 . (6)

Thus vH ≪ vK , so the Hill velocity corresponds to orbits
with very small eccentricities. In our models,σ2 > vH at
all but extremely early times, so we work in the “dispersion-
dominated” regime throughout. By considering energy con-
servation in a two-body interaction, we can write the form for
the “exchange” term as

N1
dE1

dt
= −N2

dE2

dt
= −

6G2N1N2M1M2 lnΛ12

C2R0∆Rtorbσ̄4
12

(E1 − E2) . (7)

Hereσ̄12 = (σ1 + σ2)/2 is the mean of the two velocity disper-
sions (and therefore the mean collision speed), lnΛ12 is the
appropriate Coulomb logarithm for such a collision,C2 is an-
other order-of-unity constant, and the factor of 6 in the numer-
ator arises because we are considering the energy rather than
the velocity dispersion. We can then usedE/dt = 3Mσdσ/dt
to find expressions for the relaxation of the two velocity dis-
persions:

dσ1

dt
=

N1M2
1 lnΛ1

A1torbσ
3
1

−
N2M1M2 lnΛ12

A2torb

σ1

σ̄4
12

(

1−
E2

E1

)

(8)

dσ2

dt
=

N2M2
2 lnΛ2

A1torbσ3
2

+
N1M1M2 lnΛ12

A2torb

σ2

σ̄4
12

(

E1

E2
− 1

)

. (9)

Here we have rewritten the constant terms for clarity, express-
ing them asAi = CiR0∆R/G2 for i = 1,2. The form of the ex-
change term can be considered as the product of a relaxation
time (containing three powers ofσ̄12, as in Equation 1), a vol-
ume scaling term which accounts for the different thicknesses
of the two disks (σ1/σ̄12), and a normalized energy differ-
ence. As mentioned above, similar analyses are common in
the study of planet formation. In this context other factors,
such as physical collisions, are also significant, but if we ne-
glect these terms we can compare the results to our model.
The form of the solution is the same, and by comparison to
the three-dimensional analysis of Stewart & Wetherill (1988)
we see that that the constantsC1 andC2 are related by the ratio
C1/C2 ≃ 3.5. We adopt this ratio throughout.

From these equations we can make some qualitative infer-
ences about the evolution of this system. We see from Equa-
tion 3 that the “self-relaxation” of the heavy stars will be more
rapid than that of the light stars3, so we expect the transfer
term to boost the velocity dispersion of the light stars,σ2,
while at the same time damping the velocity dispersion of the
heavy starsσ1. However, the rate at which this energy transfer
occurs depends on both the velocity dispersions and the distri-
bution of mass in the system. In Equation 8 the damping term
opposes the self-relaxation term whenE2 < E1, and we see
that the evolution of the heavy stars can be dominated by the
damping term only ifN2M2 & N1M1(σ̄12/σ1)4. Sinceσ̄12 is at

3 Formally, this is true only ifN1M2
1 > N2M2

2. However, this holds for any
mass functiondN/dM ∝ M−Γ whereΓ < 3 (the Salpeter slope isΓ = 2.35),
and is therefore true for all cases considered in this paper.
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least of orderσ1, this means that the damping term can domi-
nate if the total mass in light stars is greater than the totalmass
in heavy stars. In the case of the light stars, however, the ex-
change term acts in the same sense as the self-relaxation term,
so we always expect the light stars to relax more rapidly than
they would in isolation. This simple two-component model
shows that, in the absence of other factors such as tidal and
resonant effects, the stellar mass function is the criticalfactor
in determining the relaxation of a stellar disk.

In order to make detailed studies of the effect of a real mass
function, it is necessary to extend this analysis to at leastthree
mass classes. We add a third class withM3 < M2, and con-
sider three exchange terms of the form seen in Equation 7
(1–2, 1–3 and 2–3). In this case we see that the heaviest stars
are damped by both lighter mass classes, while the velocity
dispersion of the intermediate stars is boosted by the heaviest
stars and damped by the lightest stars, and the lightest stars
are boosted by both heavier mass classes. The distribution
of stellar masses is critical to the evolution, but by consider-
ing three classes we can now emulate the effect of massive
stars, which may only live for some fraction of the lifetime of
the system. We apply this “three-class” model to the Galactic
Center system in Section 4.

3. NUMERICAL SIMULATIONS

Our analytic model is rather simple, so in order to assess
the validity of this approach we have conducted a number of
numerical simulations. We use theN-body stellar dynamics
code developed by Hut & Makino (2003), treating both the
black hole and the stars as point masses. This code uses a
Hermite integration scheme, which enables us to retain high
numerical accuracy.

Great care must be taken when using anN-body code to
analyze such a problem, as the energy of the system is over-
whelmingly dominated by the central object. If we assume
that the stars have typical separationH, then the ratio of the
typical energy of a stellar encounter to that of the star–black-
hole system is approximately (M∗/Mbh)(R/H). Therefore, for
10M⊙ stars orbiting a 106M⊙ black hole in a disk with aspect
ratioH/R = 0.1, the energy binding the stars to the black hole
is some 104 times larger than the typical energy of stellar en-
counters. Consequently, we require very strict limits on the
energy errors resulting from the numerical integration if we
are to maintain accuracy in our simulations. This requirement,
combined with restrictions on computational time, limit usto
modeling systems with relatively few stars, typically 150 or
fewer.

3.1. Single Mass Class

We first consider a single mass of stars, in order to de-
termine the value of the numerical constantC1 in Equation
3 (and indeed to test whether a single constant is appropri-
ate). We consider systems of 50 stars, orbiting around a black
hole of mass 3×106M⊙. We set up the initial conditions as
follows. The stars are distributed in a radial region between
R = 0.05–0.15pc (i.e. a ring with radiusR0 = 0.1pc and width
∆R = 0.1pc), with uniform distributions in both radius and az-
imuth. The stars are given a Gaussian distribution inz, with
scale-heightH = 0.05R. All stars are given zero-eccentricity
Keplerian orbital velocities in thex–y plane, with zero veloc-
ity in the z-direction, and this system is then integrated.

We first consider a stellar mass ofM∗ = 25M⊙. We gen-
erated three sets of random initial conditions, and integrated
each for 6000 orbital periods atR0 (≃ 107yr for the parameters

FIG. 1.— Evolution of the rms eccentricity for a system withMbh = 3×
106M⊙, M∗ = 25M⊙ andN∗ = 50. The three grey curves show the results of
the N-body simulations for three different random realizationsof the initial
conditions, and the black curve is the mean of these three realizations. The
heavy curve shows the mean calculated in the same manner, butwith the
simulations run with more strict error tolerances (see text). The dashed curve
shows the best-fitting analytic model, withC1 = 2.2.

specified). Each model was computed using two different en-
ergy error tolerances, in order to check the numerical conver-
gence. The cumulative fractional energy errors were typically
10−9 in one case, and 10−10 in the second case. Translating
the cumulative energy error into a measure of the reliability
of the results is not straightforward, but in both cases we con-
sider the estimated energy errors to be sufficiently small. We
computed the orbital elements of each particle twice every or-
bital period in order to plot the results.

Figure 1 shows the evolution of the root-mean-square
(henceforth rms) eccentricity in the simulations. The rms ec-
centricity is evaluated from the simulations by computing the
instantaneous eccentricity of each star directly from the or-
bital elements. The discrepancy between the mean values
obtained from two sets of simulations (different error toler-
ances) is around 15%, and is comparable to the differences
between different random realizations of the same simulation.
Furthermore, this discrepancy is also comparable to the typi-
cal random fluctuations expected (≃ 15% forN∗ = 50), so we
consider the simulations to be numerically converged. We see
that the rms eccentricity of the stars rises from zero to around
0.15 after 10Myr, and we are able to compare the results of
the simulations to the analytic model presented in Section 2.
In a disk of small objects orbiting a massive central body, the
rms eccentricity of the small bodies (stars) can be related to
their velocity dispersion by

erms =
√

2
σ∗

vK
(10)

(e.g. Lissauer 1993) wherevK =
√

GMbh/R0 is the Keplerian
orbital speed. We performed a simple least-squares fit to de-
termine the best-fitting value of the constantC1. We evalu-
ate the model fit by integrating Equation 4 numerically. The
Coulomb logarithm is evaluated as the ratio of the maximum
to minimum impact parameters. We assume that the maxi-
mum impact parameter is∆R, and the minimum is 2GM∗/σ2

∗

(e.g. Binney & Tremaine 1987), and therefore evaluate the
Coulomb logarithm asΛ∗ = σ2

∗∆R/2GM∗. However, we note
that the solutions do not depend strongly on the form adopted
for Λ∗. For the “low resolution” simulations the best-fitting
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FIG. 2.— Evolution of the rms eccentricity for a system withMbh = 3×
106M⊙, M1 = 50M⊙, N1 = 10, M2 = 10M⊙ and N2 = 100. As in Fig. 1,
the grey curves show the results of theN-body simulations for three different
random realizations of the initial conditions, and the black curve is the mean
of these three realizations. Here the upper set of curves is for the 100 10M⊙
stars, and the lower curves are for the 10 50M⊙ stars. The dashed curves
again show the best-fitting analytic model, withC1 = 2.2.

value isC1 ≃ 2.55; the “high-resolution” simulations give
C1 ≃ 1.85. However, we note that the velocity dispersion,
and therefore the rms eccentricity, depends only onC−1/4

1 , so
this apparently large discrepancy in the scaling constant cor-
responds only to around a 10% uncertainty in the velocity dis-
persion. By comparison, the more detailed analysis of Stewart
& Wetherill (1988) suggests thatC1 lies in the range 1.9–2.8,
depending on the degree of anisotropy in the velocity disper-
sion, so we are satisfied that our simplified analytic form for
the “self-relaxation” term is accurate to within 10–15%.

3.2. Two Mass Classes

We now consider a system with stars of two different stellar
masses, in order to test the accuracy of the exchange term in
our analytic model. We model the evolution of a system with
10×50M⊙ stars and 100×10M⊙ stars. Thus the total mass
in light, 10M⊙ stars is double that in heavy, 50M⊙ stars, so
we expect the eccentricities of the heavy stars to be damped
significantly. For comparison, we also consider a system with
10×50M⊙ only. Once again we evaluated three random re-
alizations of the initial conditions for each; the typical cumu-
lative fractional energy errors were∼ 10−9. However, with
many more stars it was not practical to run a full convergence
test in this case. Runs with more stringent error constraints,
which were run for much shorter times, suggest that these
simulations have relaxed somewhat too rapidly, and that the
accuracy of these simulations is around 20%. However, we
note that this comparison only considers the early evolution,
where the velocity dispersion is rising very steeply.

The results of the two-class simulations are shown in Fig. 2.
The analytic model provides an excellent fit to the comparison
(10×50M⊙only) simulations and, as expected, the eccentric-
ities of the heavy stars in the two-class model are significantly
damped. The analytic curves are slightly below the simulated
data, but we suggest that this is a result of slightly insufficient
numerical accuracy in the simulations. Even with this caveat,
the agreement is good both in terms of the relative eccentric-
ities of the two mass classes and the absolute numerical scal-
ing. Consequently, we are confident that our simple analytic

model is accurate to within≃ 15%.

4. APPLICATION TO THE GALACTIC CENTER

We now apply our analysis to the GC system. One of the
more surprising results of recent years was the detection of
large numbers of young stars very close to the GC, and these
stars have now been well-studied observationally. A popula-
tion of massive O and B stars (sometimes referred to in the
literature as the GC “HeI stars”) is known to exist in one,
and possibly two, coherent ring-like structures at a distance
of around 0.1pc from the GC (e.g. Genzel et al. 2003; Ghez et
al. 2005; Paumard et al. 2006). The young age (∼ 6Myr, Pau-
mard et al. 2006) of these stars suggests that they formed at
or very close to their current location, but the environmentat
the GC poses a significant challenge to conventional theories
of star formation. Moreover, the detection of similar ringsof
stars in the center of M31 (Bender at al. 2005) suggests that
such systems may in fact be common, so their evolution war-
rants further study.

One important goal of any theory of star formation is to
predict the form of the initial stellar mass function [hence-
forth (I)MF]. Observational limitations (primarily source con-
fusion) limit the study of the lower-end of the mass func-
tion at the GC through direct observations, but several indi-
rect approaches have been taken to try to determine its form.
Paumard et al. (2006) infer the form of the MF from their
observedK-band luminosity function, and conclude that the
slope of the MFΓ is in the rangeΓ = 0.85–1.35 (i.e.dN/dM ∝
M−Γ; in these units the Salpeter slope isΓ = 2.35). Nayakshin
& Sunyaev (2005) argue that the integrated X-ray luminosity
of the GC region observed byChandra sets a limit on the to-
tal mass in young, low-mass T Tauri stars, of. 104M⊙. We
note, however, that young stars of earlier spectral type emit a
much smaller fraction of their luminosity in X-rays than their
T Tauri counterparts (e.g. Stelzer et al. 2006), so formallythis
limit only applies to stars less massive than approximately
5M⊙. Nayakshin et al. (2006) consider the mutual interac-
tion of the two stellar rings observed by Genzel et al. (2003)
and Paumard et al. (2006), and suggest that dynamical interac-
tions between the two rings would destroy the observed struc-
ture unless the total mass of the rings was. 104M⊙. Finally,
Nayakshin & Cuadra (2005) argue thatN-body interactions
within a stellar ring (without considering mass segregation)
set a somewhat weaker upper limit on the total stellar mass,
. 3×105M⊙. These studies, combined with the knowledge
that∼ 3000M⊙ is present in more massive early-type stars
(Genzel et al. 2003; Paumard et al. 2006), are strongly sug-
gestive of a significantly top-heavy MF in the GC system,
with many fewer low-mass (. 5M⊙) stars than would be ex-
pected from a standard Salpeter MF. Nayakshin (2006) sug-
gested that such a top-heavy initial MF will arise naturally
if stars are formed by the fragmentation of an accretion disk
around the central BH, and models of the “infalling cluster”
scenario predict a similarly top-heavy MF (Gürkan & Rasio
2005; Freitag et al. 2006). Here we investigate the formation
of the GC system further by considering the effect of the MF
on the dynamical evolution of a stellar ring.

4.1. Basic Model

In order to study the effect of the stellar MF on the dy-
namical evolution of the GC system we use the “three-class”
model presented in Section 2. Paumard et al. (2006) iden-
tify 53 OB and Wolf-Rayet (WR) stars in the clockwise stel-
lar ring, and we use this observation to fix the central mass
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FIG. 3.— Evolution of rms eccentricity in our “three class” model. In all
three panels the dashed, solid and dotted lines represent the three mass classes
from heaviest to lightest respectively, and in each caseM2 = 25M⊙ andN2 =
50. The upper panel shows the evolution for a Salpeter mass function with
M1 = 125M⊙ andM3 = 1M⊙: in this case we see that the light stars damp
the eccentricities of the heavier stars significantly. The middle panel shows
the same mass function slopeΓ = 2.35, but this time with a low-mass cutoff
at M3 = 5M⊙: we see that the damping effect is lessened in this case. The
lower panel shows a top-heavy mass function, withΓ = 1.35: in this case the
presence of many more massive stars results in much larger eccentricities.

FIG. 4.— “End state” rms eccentricities of the 50×25M⊙ stars as a func-
tion of the MF indexΓ. M1 = 125M⊙ andM3 = 5M⊙ are fixed, and the three
lines show the rms eccentricity of the 25M⊙ stars at 3.0, 6.0 and 10.0Myr
(bottom to top, respectively). We see that a significantly top-heavy MF is
required in order to excite the eccentricity of the 25M⊙ stars to the level seen
in the clockwise system (Paumard et al. 2006), and also that the maximum
rms eccentricity attainable is around 0.4–0.5.

class in our model. The OB and WR stars have masses in
the range≃ 20–30M⊙, so we adoptM2 = 25M⊙ andN2 = 50.
We model the effect of a varying mass function by allowing
the massesM1 andM3, and the slope of the mass function,
Γ, to be free parameters in our model. We chooseN1 andN3
according to the number of stars prescribed by the MF at ex-
actly M1 andM3, and thus the choice of the MF slope fixes
N1 and N3. Paumard et al. (2006, see also Beloborodov et
al. 2006) find the rms eccentricity of the stars in the clock-
wise ring to be 0.2–0.3. However, they find that the less well-
defined counter-clockwise ring (containing around 20 stars)
has significantly larger eccentricities, with an rms value of
around 0.6–0.7. However, we clearly see from Fig. 1 that a
ring of 50× 25M⊙ stars will reach a peak rms eccentricity
of only 0.15 in 4–8Myr. Assuming that the stellar orbits were
originally circular (as expected from formation in an accretion
disk: Nayakshin 2006), we therefore require the presence of
more massive stars in order to further excite the eccentricity
of these stars to the level seen at the GC.

We choose three initial parametrizations of our model.
Firstly, we choose a simple Salpeter MF (Γ = 2.35), with a
maximum massM1 = 125M⊙ and a minimum massM3 =
1M⊙. We then consider a Salpeter slope with a “low-mass
cutoff”, adoptingM3 = 5M⊙. (As the total mass of a Salpeter
MF diverges to low mass, this “cutoff” results in a lower to-
tal stellar mass.) Thirdly, we consider a significantly flatter
MF, similar to that found by Paumard et al. (2006) (Γ = 1.35),
while maintainingM1 = 125M⊙ andM3 = 5M⊙

The results of these models are shown in Fig. 3. We find
that a standard Salpeter MF results in significant damping of
the eccentricities of the more massive stars. This is not al-
together surprising, as the Salpeter mass-function diverges to
low mass, but we see clearly from Fig. 3 that the rms eccen-
tricity of the 25M⊙ stars is damped to. 0.1 at the age of
the GC system. Even allowing for the uncertainties both in
our model and in the observed data, this is significantly lower
than the observed eccentricities, and essentially rules out a
standard IMF for the GC rings if the stars were initially on cir-
cular orbits. When the low end of the Salpeter MF is truncated
at a higher mass the rms eccentricity of the 25M⊙ stars suffers
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noticeably less damping, but (as noted above) the rms eccen-
tricity is still somewhat lower than observed, as there are not
enough massive stars present to excite the eccentricities fur-
ther. Only when a significantly flatter MF is adopted, resulting
in a much larger number of 125M⊙ stars, do the 25M⊙ stars
reach eccentricities of≃ 0.2 in 5Myr, as demanded by obser-
vations. We also note that these low to moderate eccentricities
mean that few, if any, stars will be ejected from the ring over
10Myr timescales, even at low stellar masses.

Fig. 4 shows the effect of varying the mass function slope
on the rms eccentricity of the 25M⊙ stars, withM1 = 125M⊙

andM3 = 5M⊙. We clearly see that a Salpeter MF lacks suf-
ficient massive stars to excite the rms eccentricity above 0.2.
However, even extremely top-heavy mass functions fail to ex-
cite the eccentricities to values much greater than∼ 0.5 at the
age of the GC system, which suggests that the more eccentric
counter-clockwise system (Paumard et al. 2006) may pose a
problem for our model. We return to this issue in Section 4.3.

4.2. Mass-loss from massive stars

This simple treatment of the GC system is unlikely to be
valid, however, as stars born at the upper end of the IMF are
subject to significant mass-loss during their lifetimes. More-
over, it is unlikely that stars of greater than∼ 50M⊙ will live
for longer than 2–3Myr (e.g. Schaller et al. 1992). The effect
of a supernova blast wave on the dynamics of the stellar rings
is negligible (e.g. Wheeler, Lecar & McKee 1975), but the
removal of the massive stars from the system can have a sig-
nificant effect, as they are no longer able to excite the velocity
dispersion of lower mass stars. We use two crude approxi-
mations to account for mass-loss and/or stellar death in our
simple model.

Our first approach is simply to assume that the most mas-
sive stars are not subject to any mass-loss, but are removed
from the system at the end of their lifetimes. We adopt a
lifetime of 3Myr for these stars, and model this by setting
N1 = 0 from t = 3Myr onwards. Our second approach is to
include mass-loss from the most massive stars. This is done
simply by making the stellar massM1 a time-dependent func-
tion M1(t). The details of mass loss from very massive stars
are not well understood, but the qualitative effect of mass-loss
on the dynamical evolution of the system is not strongly de-
pendent on the mass-loss rates adopted. For simplicity we
adopt the mean mass-loss rate for WR stars derived by Nugis
& Lamers (2000):

log10Ṁ1 = −5.73+ 0.88log10M1 . (11)

We use this form for the mass-loss rateṀ1 for M1 > 25M⊙,
and assume that the stars’ mass remains constant once it drops
to 25M⊙. This results in a rather rapid decline in the mass of
the heaviest stars, with the massM1(t) falling from 125M⊙

to 25M⊙ in 1.25Myr. We note, however, that this form was
derived from observations of WR stars, the most massive of
which were around 50M⊙, and so is of uncertain validity at
very large stellar mass.

The results are shown in Fig. 5. We see that the conse-
quence of including mass-loss is, as expected, that the eccen-
tricities of the observable stars are not excited as highly as in
the case when no mass-loss was included. The exact eccen-
tricities achieved are rather sensitive to some rather poorly-
defined parameters in the model, namely the mass-loss rates
and also the upper cutoff of the MF. However, in broad terms
we see that the typical eccentricities of the observable stars

FIG. 5.— Evolution of rms eccentricity when mass-loss is taken into ac-
count. For clarity we plot only the eccentricities of the 25M⊙ (“class 2”)
stars. The upper panel shows the case where the heaviest (125M⊙) stars are
simply removed att = 3Myr. The solid line shows the case of a Salpeter MF,
truncated atM3 = 5M⊙; the dashed line shows the case of a top-heavy mass
function (Γ = 1.35), also with the same low-mass cutoff. The lower panel is
the same, but in this case the heaviest stars were subject to progressive mass-
loss as specified in Equation 11. In both cases we see that a top-heavy IMF
is required in order to produce rms eccentricities (in the 25M⊙ stars) larger
than around 0.15.

are expected to be in the range≃ 0.1–0.3, depending on the
details of the upper end of the MF.

4.3. Implications for the Galactic Center system

Taken together, these results have important consequences
for the GC system. As noted above, Paumard et al. (2006)
find typical eccentricities in the clockwise ring of around 0.2–
0.3, and in the counter-clockwise ring of≃ 0.7. Our anal-
ysis has shown that, in order for the observed stars to reach
even the moderate eccentricities seen in the clockwise ring,
there must be a significant population of much more massive
(> 100M⊙) stars present in numbers greatly exceeding those
expected from a Salpeter MF. We also find that the total mass
in low-mass (. 5M⊙) stars must be less than the mass in OB
stars in order to avoid significant damping of the eccentricities
of the OB stars. Thus we conclude that the clockwise system
has a rather top-heavy mass function, in agreement with the
previous observations of Nayakshin & Sunyaev (2005) and
Paumard et al. (2006), and find that the observed eccentrici-
ties are in agreement with those expected from star formation
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in a Keplerian disk (e.g. Goodman & Tan 2004; Nayakshin
2006).

As noted in Section 4.1, however, the much larger eccen-
tricities in the counter-clockwise system (Paumard et al. 2006;
Beloborodov et al. 2006) pose a problem for our model. Even
in a “best-case” model, with no mass-loss from the heaviest
stars, and a very top-heavy MF (Γ = 0.85) extending to very
high stellar mass (175M⊙), the observable 25M⊙ stars only
reach an rms eccentricity of 0.5 in 10Myr, and more realis-
tic models suggest that rms eccentricities greater than 0.4are
unlikely (see Fig. 4). We therefore conclude that the counter-
clockwise system was probably not formed from an initially
circular disk, and suggest that some other mechanism must be
responsible.

As noted above, our model assumes initially circular stellar
orbits, but it may be possible to produce larger eccentricities
if the initial configuration of the system has significant eccen-
tricity. Such a configuration is also possible in the infalling
cluster scenario (Gerhard 2001; McMillan & Portegies Zwart
2003). Within the disk fragmentation scenario it may be pos-
sible to generate eccentric initial conditions if the disk is itself
eccentric when it fragments. If the disk is formed by some in-
dividual “accretion event”, such as the capture of a molecular
cloud (as suggested by Nayakshin 2006), then an eccentric
stellar disk can form if the fragmentation timescale is shorter
than the circularization timescale of the disk. Models of ec-
centric accretion disks have shown that a disk can typically
remain eccentric for many orbital times (Syer & Clarke 1992;
Ogilvie 2001), so rapid fragmentation of such a disk may in-
deed provide a mechanism for generating the large observed
stellar eccentricities. We note also that eccentric initial condi-
tions may retain an observable signature, in the form of a sig-
nificantly anisotropic velocity dispersion. Observationsof the
stellar disk(s) at the center of M31 suggest significant, coher-
ent, eccentricities, and models of eccentric stellar diskshave
been shown to fit the observed data well (e.g. Tremaine 1995;
Peiris & Tremaine 2003; Bender at al. 2005). We note that the
central black hole in M31 is approximately 100 times more
massive than that in the Galaxy, so an eccentric stellar disk
will retain a preferred eccentricity vector for a much longer
time in M31 than at the GC. However, detailed study of this
problem, and associated issues to do with the evolution of ini-
tially coherent eccentric stellar disks, is beyond the scope of
this investigation.

Our model predicts that few, if any, stars should be scat-
tered inwards from the rings at 0.1pc, and we therefore make
no attempt to explain the origin of the so-called “S-stars” (e.g.
Genzel et al. 2003; Ghez et al. 2005), which orbit much closer
to the GC (at a radius of≃ 0.01pc). It has been suggested that
these stars may have been scattered inwards from the rings
by an intermediate-mass (103–104M⊙) black hole (Hansen &
Milosavljević 2003), but our model does not make any predic-
tion in this regard. We note, however, that such an interaction
would provide an additional means of exciting eccentricity
in the stellar rings, and therefore may provide another means
of generating the large eccentricities observed in the counter-
clockwise ring.

5. LIMITATIONS

There are several obvious limitations to our analysis. Our
model assumes that the velocity dispersion is isotropic, and
while this assumption is not unreasonable it is not strictly
valid. Similar analyses applied to planetesimals (e.g. Stew-
art & Wetherill 1988) suggest that in equipartition the radial

velocity dispersion is roughly double the vertical dispersion.
Our simulations are complicated by the fact that our initial
conditions have zero velocity dispersion in the radial direction
(Keplerian orbits), but non-zero dispersion in the vertical di-
rection due to the finite thickness of the ring. The system does
not reach equipartition over the timescales considered, but the
general trend seems to be in broad agreement with previous
analyses. This suggests that our relation between the velocity
dispersion and the disk thickness is not exact, but we note that
the manner in which we fit the scaling constantC1 enables us
to account for this. Furthermore, we find good agreement be-
tween the model and the simulations, so we do not consider
anisotropy in the system to be a significant problem.

As mentioned in Section 2, our analytic model does not al-
low for cooling, and consequently does not permit an equi-
librium solution. As long as the velocity dispersion remains
small relative to the orbital speed (i.e. the rms eccentricity re-
mains small) this approximation is valid, and this is supported
by the favorable comparison between the analytic model and
theN-body simulations. This approach may result in an over-
estimate ofσ (and therefore the eccentricity) ifσ becomes
large. However, the largest eccentricities attained by anyof
our models are≃ 0.5, so we do not consider this to be a sig-
nificant problem. We also neglect cooling via physical stellar
collisions, but note that at the stellar densities considered here
this is unlikely to be significant. Similarly, although we con-
sider only the “dispersion dominated” regime for our two- and
three-class models, we note that our initial conditions (with
circular orbits) lie in the“shear-dominated” regime. How-
ever, the relaxation of the system to the dispersion-dominated
regime is very rapid, typically occurring within∼ 100 orbits,
so we are satisfied that this simplification does not affect the
results significantly.

As noted in Section 3.2, the convergence of our “two-class”
numerical simulations is rather marginal, with tests indicat-
ing that the relaxation of the system is somewhat too fast.
Unfortunately it is not practical to run more stringent simu-
lations with this type (Hermite) of numerical algorithm, and
is it not clear if more efficient algorithms (such as tree-codes)
will provide sufficient accuracy to study this problem. Our
tests suggest that the accuracy of our simulations is likelyno
better than±15%, but we are satisfied that this level of un-
certainly does not affect the qualitative results of the model.
We also note, as above, that our treatment of mass-loss from
massive stars is somewhat arbitrary. However, the two mod-
els chosen span a significant fraction of the available parame-
ter space, and more extreme parametrizations do not alter our
conclusions significantly.

As noted in Section 2, our model neglects other dynami-
cal effects such as tidal and resonant effects, and also treats
the black hole as a point mass with a Newtonian potential. At
the large radius considered here (0.1pc) the timescale for rela-
tivistic precession of orbits is much longer than the age of the
system, so we can safely neglect relativistic effects. (Theex-
pected precession rate is a few degrees in 10Myr: Weinberg,
Milosavljević & Ghez 2005.) Moreover, the non-Keplerian
component of the potential due to either remnant black holes
(Miralda-Escudé & Gould 2000) or other stellar populations
at the GC (e.g. Genzel et al. 2003; Ghez et al. 2005) is not ex-
pected to be significant. The effect of resonances on the GC
system has recently been studied by Hopman & Alexander
(2006), who find that resonant relaxation can in fact dominate
over the type of uncorrelated two-body interactions consid-
ered here. They note, however, that the stellar disks observed
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at the GC are sufficiently young as to be unaffected by reso-
nant effects. The fact that our model, which neglects resonant
effects, provides a good fit to our numerical simulations sup-
ports this conclusion. It may well be that resonant effects will
dominate the future evolution of the stellar rings at the GC,
but in the early stages of evolution considered here they do
not.

6. SUMMARY

In this paper we have considered the dynamical evolution of
rings of stars around a massive black hole. Through analytic
arguments and numerical simulations we have constructed a
model for the evolution of a disk of stars of different masses,
and shown that the stellar mass function is the dominant fac-
tor in determining the evolution of such a system. We have
then applied our analysis to rings of stars observed to orbit
the Galactic Center system. We find, in agreement with previ-
ous studies, that the total mass in low-mass (. 5M⊙) stars
must be significantly lower than expected from a Salpeter
mass function, and also find that a significant population of
massive (> 100M⊙) stars must have been present in order to

produce eccentricities in the range 0.2–0.3, as observed by
Paumard et al. (2006). However, we find that dynamical re-
laxation alone is unlikely to produce rms eccentricities larger
than≃ 0.4 in the GC system. Consequently we conclude that
rings with larger eccentricities, such as the counter-clockwise
system observed by Paumard et al. (2006), are unlikely to
have originated in a circular disk, and suggest that some other
dynamical process must be responsible for such systems. Al-
ternatively, we suggest that star formation by fragmentation
of an eccentric accretion disk could produce the observed ec-
centricities.
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